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The symbolic style of programming referred to as Symbolic Algol I [l] appears to 
have a number of advantages when applied to the solution ,of sets of nonlinear partial- 
differential equations. Programs written in that style are clear, elegant, and concise and 
their modular structure enables large parts of the programs to be used over and over 
again for many different problems. Such programs, however, tend to be slow because 
they involve a large number of nested procedure calls at execution time. 

Finite-difference methods in several dimensions require in general that a relatively 
small number of equations be solved a large number of times and much is gained if 
these nested procedure calls are executed only once. This is achieved by a generator or 
translator program, written in Algol, which processes input written in a related style 
named Symbolic Algol II. Usually only finite-difference equations in very compact 
symbolic form are input, while output is completely explicit and can be in a number of 
computer languages. Of greatest interest are Assembler code modules automatically 
produced in this way. They are competitive in speed with fully hand-optimized Fortran 
versions and are produced effortlessly and error free, so that complex sets of equations 
can readily be programmed or alterations made. For production runs these modules 
can be incorporated,into a Fortran control program. 

1. INTRODUCTION 

This paper describes how Algol 60 can be used as a powerful macro-processor 
which enables the symbolic expressions of classical vector analysis to generate 
efficient target code automatically by the use of controlled side effects. The target 
lanuages produced so far have been IBM 360 Assembler code, Fortran, Algol 
and ICL KDF9 Usercode, but it appears that any language might be generated in 
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a similar way. The target code can be optimized by physical symmetry declarations; 
for example if I’, = 0 (no rotation) and af/laz = 0 for all functions f (no z depend- 
ence), then appropriate declarations can be used to suppress terms in which such 
quantities occur as products. The method can be used for generalized orthogonal 
curvilinear coordinates and an example will be given. Finally it would seem that the 
method might be extended without difficulty to other kinds of symbolic formalism. 

A previous paper [l] showed how Algol could be used for the symbolic solution 

of problems in computational physics, especially those in which sets of partial- 
differential equations are solved by finite-difference methods using a discrete mesh. 
A vector equation such as 

aB/at = curl(V x B) + qV2B (1) 

can be programmed symbolically in the closely similar form 

AB[Cl, Q] : = CURL(CROSS(V, B)) + ETA x DELSQ(B); (2) 

a style of programming which has been termed [I] Symbolic Algol I. Here the 
left side of (2) is an array element representing the magnetic field B in the Cl- 
direction, (Cl = I,2 or 3) at the mesh point Q, while most of the identifiers on the 
right side are symbolic operators or functions which are closely analogous to their 
counterparts in Eq. (1) and are represented by real procedures. Details of the choice 
of coordinate system, the number of dimensions, the boundary conditions, and 
the difference scheme are excluded from Eq. (2) and are dealt with at a lower 
level just as in the familiar symbolic notations of mathematical physics. 

Symbolic Algol I(SA/I) enables complex problems to be coded in a concise 
form which is virtually system independent and should be readily intelligible 
to physicists because it is close to the mathematical language which they normally 
use. By way of example, Table I shows the partial-differential equations which 
are used in the 3D magnetohydrodynamic TRINITY code [l], while Table II 

TABLE I 

3D MHD Equations Used in the TRINITY Code 

Continuity equation ap/at = -v .p~ 
Momentum equation a(puiyat = - ajax,(pij) + vv2p~i 
Magnetic equation aBlat = v x (V x B) + +ZB 

Temperature equation aTjar = -V . (TV) + (2 - y) TV ’ v + KPT 
+(Y - lW/p + (Y - 1) 4P x 3” + P . $7 

Pressure Pi9 = pT&, + pvivj + (B2/2)S,, - B,B, 

Current j=VxB 
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TABLE II 

3D MHD Equations Programmed in Symbolic Algol I 

procedure INVOKE DIFFERENCE EQUATIONS; 

hegin 

CONTINUITY EQUATION: DT: = 2 x DELTA T; Cl: = C2: = 1; 
Q: = 1 + I + 1 + (J + 1) x PI + (K + 1) x PI x PJ; 
NEW RHO: = RHO - DT x DIV(RH0 x V); 
MOMENTUM EQUATION: DT: = 2 x DELTA T/(1 + NU/EPS); 

for Cl: = 1, 2, 3 do 
AV[CI, Q]: = (RHO x V + DT x (-DIV 2(P) + NU x DELSQ(RH0 x V)))/NEW 

RHO; 
ARHO[Q]: = NEW RHO; 

MAGNETIC EQUATION: DT: = 2 x DELTA T/(1 + ETA/EPS); 
for Cl: = 1, 2, 3 do 

AB[CI, Q]: = B + DT x (CURL(CROSS(V, B)) + ETA x DELSQ(B)); 

TEMPERATURE EQUATION: DT: = 2 x DELTA T/(1 + KAPPA/EPS); Cl: = 1; 
ATEM[QJ: = TEM + DT x (-DIV(TEM x V) + KAPPA x DELSQ(TEM) 

+ (2 - GAMMA) x SAV(TEM) x DIV(V) + (GAMMA - 1) x (ETA x 
SQM(CURL(B))/SAV(RHO) + NU x (SQM(CURL(V)) + DIV(V) t 2))); 

end; 
real procedure P; 
P:=ifCI=C2then(RHOx(TEM+VxV)+0.5xDOT(B,B)-BxB)eIse 
(RHO x V x V2 - B x B2); 

Note. The differences in the treatment ofp and j between Tables I, II, and III are not essential. 

shows the same equations programmed in SA/I. The differences are fairly minor 
and are partly due to the restricted class of symbols currently available on computer 
input devices such as the teletype or card punch. 

The advantages of symbolic notation are clear enough. The Algol procedure 
operators are neat and concise and have the same formal properties as their 
mathematical counterparts, so that the manipulation of statements and the 
construction of new expressions are quick, intelligible, and easy to check for errors. 
A typical example is the operator CURL, represented in a Cartesian coordinate 
system by the short procedure 

real procedure CURL(A); 

real A; CURL := RP(DEL(RP(A))) - RM(DEL(RM(A))); (3) 

5wo/3-9 
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Here RP and RM are rotation operators which rotate the 1,2, 3-components of 
vectors or tensors in either the positive (RP) or negative (RM) directions (Fig. l), 
while DEL is a finite-difference operator. These rotation operators are reciprocal 
to one another so that 

RP(RM(A)) = RM(RP(A)) = A, (4) 

while the property 

RP(RP(A)) = RM(A) (5) 

is also often used in 3 dimensions. The use of vector and tensor operators ensures 
that statements are independent of the coordinate system (covariant), the compo- 
nents being hidden and appearing only at execution time. 

FIG. 1. Positive and negative rotation operators. The operators RP, RM rotate vector com- 
ponents cyclically in the positive and negative directions, respectively, and satisfy the symbolic 
relations R+8 = RwS = R+R_ = R-R, = 1, from which R+2 = R- , etc. (Here R, = RP, R- 
I RM.) 

All these properties combined with modularity and portability of programs [2] 
make SA/I a powerful tool for the quick and error-free development of large and 
complex physics or engineering programs. However, SA/I executes quite slowly 
because of the great number of nested procedure calls and is therefore not too 
useful for 2D and 3D production runs although this depends on how well the 
Algol 60 compiler has been written. Its main application to date lies in the testing 
of prototype programs on a coarse mesh over a few timesteps. In this way standard 
test results are obtained for comparison with future better-optimized and faster 
versions of the same program, written for example in ordinary Algol, Fortran, 
or Assembler code [l]. 

The aim of the present paper is to carry the theory of Symbolic Algol one stage 
further. We shall show that by a further slight transformation of a vector expression 
such as Eq. (2) it can be made to generate optimized code automatically. In this 
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new style of programming, which is termed Symbolic Algol II (SA/II), Eq. (2) in 
fact becomes 

EQUATE(B, SUM(B, MULT(DT, SUM(CURL(CROSS(V, B), 

MULT(ETA, DELSQ(B)))))); (6) 

and the statements of Table II are replaced by those of Table III. The reason for 
this transformation is to replace the arithmetic operators +, -, x , /, : = which 
occupy a privileged position in high-level languages by their generalized counter- 
parts SUM, DIFF, MULT, QUOT which are real procedures, and EQUATE 

TABLE III 

3D MHD Equations Programmed in Symbolic Algol II 

CONTINUITY EQUATION’: 

EQUATE (NEWRHO, DIFF(RH0, MULT(DT(l), DIV(MULT(RH0, V))))); 

MOMENTUM EQUATION: 

forC1: = 1,2,3do 

EQUATE(V, QUOT(SUM(MULT(RH0, V), MULT(DT(2), DIFF(SUM(DIV 

(DIFF(TEN(B, B), MULT(RHO(TEN(V, V)))), MULT(NU, DELSQ(MULT(RH0, V)))), 

GRAD(SUM(MULT(RH0, TEM), MULT(RNUM(O.$ DOT(B, B))))))), NEWRHO)); 

MAGNETIC EQUATION: 

forC1: = 1,2,3do 

EQUATE(B, SUM(B, MULT(DT(3), SUM(CURL(CROSS(V, B)), MULT(ETA,DELSQ(B)))))); 

TEMPERATURE EQUATION: 

EQUATE(TEM, SUM(TEM, MULT(DT(4), SUM(DIFF(SUM(MULT(MULT(DIFF 

(RNUM(2.0), GAMMA), SAV(TEM)), DIV(V)),MULT(KAPPA,DELSQ(TEM))),DIV(MULT 

(TEM, V))), SUM(QUOT(MULT(DIFF(GAMMA, RNUM (LO)), MULT(ETA, SQUARE 

(CURL(B)))), SAV(RHO)), MULT@IFF(GAMMA, RNUM (LO)), MULT (NU, SUM 

(SQUARE (CWW% EXP (DWV), INUMt2)))))))))); 

Note. Equations (1.5) and (1.6) have been incorporated into the main equations although they 
can be defmed separately. The 4 calls of the procedure DT take into account the Dufort-Frankel 
factors [l]. 

which is a procedure. Once this has been done these procedures can, of course, be 
given any interpretation that we choose, and they can in particular be made to 
generate optimized code in any desired programming language by means of side 
effects as explained in Section 2. 

The languages generated so far have been IBM 360 Assembler code, optimized 
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Algol and Fortran, and ICL KDF9 Usercode which is similar to Reverse Polish 
and therefore has a theoretical as well as a practical interest. The transformations 
from Table I and Table II to Table III obey prescribed rules and we have in fact 
carried them out automatically by two separate methods. One method uses the 
STAGE 2 Macro-Processor [3,4], and the other uses Algol60 as a string processor 
and syntax analyzer [5]. In practice these transformations are not difficult to perform 
by hand. 

An SA/II generator program looks very like the corresponding SA/I calculational 
program except that some of the auxiliary statements must also be changed from 
form (2) to form (6), so that, for example, CURL becomes 

real procedure CURL(X); 

real (X); CURL := DIFF(RP(DEL(RP(X))), RM(DEL(RM(X)))); (7) 

The purpose of (7) is however rather different from that of (3) because instead of 
actually calculating numerical values directly, the program now works out which 
programming instructions are needed to calculate these values and then generates 
the instructions, either printing them or punching them out on cards or placing 
them in a file for subsequent execution. Clearly there is a close correspondence 
between the two processes of calculation and code generation-for example, in 
both SA/I and SA/II the storage locations are evaluated by manipulating symbolic 
operators-and so CURL, DEL and other operators appear virtually unaltered. 
The automatically generated modules can be incorporated into control programs 
which are written in Fortran, Algal, or any other convenient language, as discussed 
in Section 6. 

An SA/II generator program is not a compiler, and it is shorter, more flexible, 
and easier to write than most compilers. We shall endeavor to explain the relation 
in Section 6. Since it is coded in Algol and has at least as many nested procedure 
calls as SA/I it may also not be as fast as some compilers. However, the point is 
that each statement in Table III is executed only once, instead of many millions 
of times as in a normal run. Code generation from Table III actually occupies 
about 10 set on the IBM 360/91, which is comparable with ordinary job overheads 
and much less than the duration of a typical production run which may last for 
several minutes or even hours. The only real requirement is that the generated 
Assembler code should be efficient, and it turns out in practice to be slightly more 
efficient than the corresponding Fortran written by a good programmer and 
compiled with the IBM Fortran H Option 2 Compiler. 

The basic idea of SA/I is quite straightforward and will be explained in Section 2, 
namely, that side effects of typed procedures can be used to generate code. Some 
complications arise in a practical program because it is desirable to make the 
generated code as efficient as possible. As we have already mentioned, it should be 
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possible in a problem in which V, = 0 or af/az = 0 to declare these symmetry 
conditions to the generator program and to have it automatically eliminate all 
terms which are then known to be identically zero. This can be achieved by making 
use of the fact that the real procedures in a statement such as (6) pass numerical 
values to one another. The simplest version of SA/II outlined in Section 2 treats 
these values as dummies, but they can be employed for a variety of purposes 
including optimization. A zero value is assigned to basic terms or products which 
are known to be identically zero in the physical problem, and this value is used to 
control the way in which the code is generated. Unnecessary brackets and signs are 
eliminated in a similar fashion. 

Code generation is carried out by a real procedure TRIPOP (triple operator), 
and operators such as SUM, DIFF, MULT QUOT simply call TRIPOP to generate 
the appropriate output. Although TRIPOP is quite short its working is fairly 
complex, and to avoid burdening the present discussion it will be described in detail 
elsewhere [6]. A brief account is, however, given in Section 3. 

Since Algol is likely to be useful for other types of symbolic manipulation it 
may be appropriate, after some examples have been given, to list those features of 
the language that we have found to be important, and this is done in Section 8. 
It will, however, become evident almost from the beginning that recursion and 
call-by-name play a significant part, together with a number of other facilities which 
are not available in a language such as Fortran. A more practical point is that 
although Algol allows identifiers to have arbitrary length, some compilers (including 
that of the IBM 360) distinguish only the first six characters. To make the discussion 
of this paper clearer we have in some cases used long English-language identifiers, 
but in the published version of the program itself [7] the identifiers are restricted 
to six characters or less to avoid possible clashes. 

2. CODE GENERATION 

The generation of code by an expression such as 

SUM(X, MULT(Y, Z)) 63) 

is simple to explain. We tist need a procedure PRINT((string)) which will output 
an arbitrary string of characters, taking into account any special requirements to 
leave gaps at the beginning and end of the line. In terms of this we define the 
algebraic symbols 

procedure PLUS; PRINT(‘+‘); 

procedure STAR; PRINT(‘*‘); 
(9) 
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and the symbols to be used as identifiers in the generated code 

real procedure X; begin PRINT(‘X’); X : = 1; end; 

real procedure Y; begin PRINT(‘Y’); Y := 1; end; 

real procedure Z; begin PRINT(‘Z’); Z := 1; end; 
(10) 

Finally, there are two arithmetic operators 

real procedure MULT(A, B); real (A, B); 

begin real CALL; CALL : = A; STAR; CALL := B; MULT := 1; end; (11) 

and 

real procedure SUM(A, B); real(A, B); 

begin reai CALL; CALL : = A; PLUS; CALL : = B; SUM : = 1; end; (12) 

Explanation 

Exactly what happens is illustrated by the tree shown in Fig. 2. When the 
statement ‘CALL := A’ is encountered, the real procedure X is invoked by name 
from SUM, causing a symbol ‘X’ to be generated. The local variable CALL in 

PRINT 

FIG. 2. 

i f i 
‘Y’ ‘*’ ” 2 

Generation of code by the expression SUM(X, MULT(Y, a. 

SUM is set equal to 1 but this value is disregarded. A ‘ + ’ symbol is next produced. 
Finally, MULT is entered by ‘CALL := B’ which generates the symbols ‘Y’, ‘*‘, 
‘Z’ in the same way so that we get 

as required. 

x+y*z (13) 

Several points may be noticed: 

(a) Typed procedures are used to generate the code. 
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(b) The actual generation takes place by means of side effects; the statement 

CALL := A; 

causes the string of symbols associated with the formal parameter A to be con- 
structed, however complex an expression A mqy represent. 

(c) A precise order is forced on these side effects, independently of the order 
in which the Algol compiler writer may choose to evaluate the terms in an arith- 
metic expression such as P + Q or P x Q. 

(d) It is immaterial whether real or integer procedures are used, but we have 
chosen real procedures for compatibility with SA/I. 

(e) At this stage the values associated with the real procedures have no 
significance; only the side effects are important. In Section 3 we shall however 
indicate how a suitably chosen assignment of values can be used to remove 
expressions which are known to be identically zero. 

Generation of Indices 

The variable indices defining a particular component of a vector variable, and 
the mesh point at which it is to be evaluated, are specified by global variables whose 
values are controlled by the cyclic rotation operators RP(X), RM(X) and the 
displacement operators EP(X), EM(X). The action of these operators relies on 
the Algol “call by name” facility [S, 91. In the example 

real procedure RP(X); real X; 

begin Cl := CP[Cl]; RP := X; Cl := CM[Cl]; end; 

the procedure X is made to use the value of Cl defined within the procedure RP, 
because it is evaluated at the time the statement RP := X; is executed and not at 
the time of the call to RP, as would be the case if the “call by value” alternative 
were used. 

Generation of Reverse Polish 

The reader might be excused for wondering what exactly has been achieved so 
far: starting from the algebraic expression (13) we have converted it automatically 
or by hand into theI SA/II form (88), and then proved that this is capable of 
reproducing the original expression. The real advantages are first, that the generated 
code can represent a considerable expansion of the original which may be in 
symbolic vector or tensor form, and second, that by making small changes in the 
basic procedures such as PLUS, STAR, X, Y, Z, MULT, SUM we can generate 
the code in a lower-level and therefore more-efficient language. 



512 PETRAVIC, KUO-PETRAVIC, AND ROBERTS 

To illustrate this second point we show how to convert (8) into the Reverse 
Polish form 

x, y, z, *, +, (14) 

which is in l-l correspondence with the Assembler Language (or “Usercode”) of 
the ICL KDF9 on which Symbolic Algol was first developed. To do this we simply 
modify the five procedures (9) and (10) in order to add an extra comma, e.g., 

procedure PLUS; PRINT((‘+,‘); (15) 

and then reverse the order of the second and third statements in the arithmetic 
operators (11) and (12), e.g., 

CALL := A; CALL := B; STAR; MULT := 1; 

which then enables (8) to generate (14). 

(16) 

Brackets 

The question of brackets has not so far been taken into account in generating 
algebraic expressions such as (13). Thus at present 

x x (Y + Z) (17) 
would be converted by 

MULT(X, SUM(Y, Z)) (18) 

into 
X*Y+Z, (19 

which is wrong, although the corresponding Reverse Polish string is still correct: 

x y, z, +, *, (20) 

The simplest way of correcting this is to enclose the output from each arithmetic 
operator in a pair of brackets by means of two procedures OPENB, CLOSEB, 
so that, for example, (12) becomes 

real procedure SUM(A, B); real(A, B); 

begin real CALL; OPENB; CALL := A; PLUS; 
CALL := B; SUM := 1; CLOSEB; end; 

Then expressions (8) and (18) generate the correct output 

m + gc * ZN 

W) 

(22) 
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and 

respectively. 
(X * (Y + m (23) 

A complicated expression will now produce a large number of unnecessary pairs 
of brackets but although these make the expression difficult for a human to under- 
stand they should not trouble a Fortran or Algol compiler; in fact they might well 
shorten the compilation time since questions of operator precedence need no longer 
be resolved. However, in order to make the generated code more elegant and 
intelligible we have implemented a method for removing the unnecessary bracket 
pairs and this will be described in Ref. [6]. 

Another difficulty which occurs with the KDF9 is that the nesting store or 
arithmetic stack has finite depth (in practice about 13), so that a sufficiently long 
string of identifiers unrelieved by operators could cause it to overflow. To monitor 
this situation (which has not yet occurred in the problems that we have treated) 
one can introduce a level counter and print out a warning to the user when overflow 
is detected. In most cases he can then permute the order in the SA/II expression to 
produce a better pattern. For example 

instead of (8) leads to 

SUM(MULT(Y, Z), X) (24) 

y, z, *, x, +, (25) 

which requires a smaller stack. Overflow is more likely to occur with the IBM 360 
which has only 4 floating-point registers, and here we perform automatic dumping 
and restoring of registers when necessary as explained in Ref. [6]. 

3. PROCESSING THE EQUATIONS 

The central procedure of the SA/II generator program is EQUATE, which for 
Algol output is 

procedure EQUATE(X, Y): real X, Y; 
begin real CALL; 

NEXTLINE; PRINT := false; 
if X = 0 then go to EXIT; 
PRINT := true; SIGN := 0; 
CALL := X; ASSIGN; 
if Y = 0 then TEXT (1, ‘0’); 
SEMICOLON; 

EXIT: 
end; 

(26) 
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A similar version is used for any other target code but the explanation is simpler 
for this particular example and may give some idea of the power of the symbolic 
method. ASSIGN generates the assignment symbol, ‘= .’ for the IBM 360. 

Suppose that (26) is called by the statement 

EQUATE(B, SUM(B, MULT(DT, CURL(CROSS(V, B))))); (27) 

as in Table III but without the resistive diffusion term. Because this is a vector 
equation it will be called 3 times with Cl = 1,2, 3 and we shall suppose that B, 
has been declared identically zero. The tree of real procedure calls is indicated in 
Fig. 3. 

EQUATE 

FIG. 3. Procedure tree for the magnetic equation (27). Each arithmetic operator indicated 
by * calls the TRIPOP operator recursively to control the optimization process. Branches broken 
off with // are similar to the full branch shown on the diagram. Terminal symbols V, B, DT, 
R2DS generate the code, while RP, RM manipulate the global component variable Cl, and EP, 
EM manipulate the mesh location. 

The auxiliary call to NEXTLINE does shy editing that is required, e.g., ruling 
a line across the output page, and printing is then’ switched off. The left side X 
of the expression, in this case B, , B, or B, , is next tested to see if it is identically 
zero, which as explained in Section 1 will be represented by a zero value. If so, 
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there is no point in generating anything and the right side is skipped. (Cl = 3). 
Note that since X is a real procedure the statement if X = 0 then . . . involves further 
operations at a lower 1evel.l 

Assuming that the component is not identically zero we switch printing on again, 
make sure that no + sign will be printed, and reference X once more, subsequently 
calling the procedure ASSIGN. This series of actions will generate some expanded 
form such as 

BlUQ/).= (28) 

depending on the hardware representation and on the way in which array compo- 
nents are being referenced. Note that the numerical value in (28) is that of the formal 
parameter V. 

The whole of the testing and generation of the right side is now contained in the 
deceptively simple statement 

if Y = 0 then TEXT( 1, ‘0’); 

Some possible cases for the right side Y are 

(29) 

a. Constant. Since printing is now switched on the numerical representation 
of the constant is generated. 

b. Nonsubscripted variable. The character string corresponding to this 
variable is generated. 

c. Array variable. If this variable has been declared to be identically zero 
it will not be printed and the value 0 will be returned, causing the second part of 
the if statement to print ‘0’. If it is not identically zero it will print its own character 
representation, including any necessary vector or tensor components. 

d. Arithmetic expression. The outermost arithmetic operator calls TRIPOP 
which switches off the printing and tests the whole of the expression, TRIPOP 
being called again recursively by each of the internal arithmetic operators, including 
those in CURL and CROSS. If it is finally determined to be identically zero then 
‘0’ is printed. Otherwise this outermost TRIPOP initiates a second scan which 
prints all those subexpressions which were found to be not identically zero the 
first time they were tested. 

As an example, Table IV shows Algol 60 target code generated for the IBM 360 
for Maxwell’s two equations 

aE/at = curl H, aH/Ct = -curl E, 

1 Since X is real it is perhaps not good practice to test whether or not it is exactly zero but we 
have found no difficulty on the ICL KDF9 or IBM 360. The procedure values are always set to 
integers or sums or differences of small integers and it is hard to see why trouble should arise 
with any computer. If it does, one can simply test for X < E where 0 < E < 1. 
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TABLE 1V 

Maxwell’s Equations in 3D Orthogonal Curvilinear Coordinates Generated 
in IBM 360 Algal” 

‘COMMENT’---- ____ --------- ________________; 

HFILDl(/Q/). = HFILDl(/Q/) - DCT7 * ((EFILD3(/Q + 141) * H3(/ + 2/) - EFILD3(/Q-1 

41) * H3(/ - 20) * R2DQ2 - (EFILDZ(/Q + 140/) * H2(/ + 31) - EFILDZ(/Q - 140/) * 
H2(/ - 3/)) * R2DQ3) * RHPHMl; 

‘COMMENT’---------------------------------; 

HFILD2(/Q/). = HFILD2(/Q/) - DCT7 * ((EFILDl(/Q + 140/) * Hl(/ + 3/)-EFILDl(/Q-14 
Oi) * Hl(/ - 31)) * R2DQ3 - (EFILD3(/Q + l/) * H3(/ + l/) - EFILD3(/Q - I/) * 
H2(/ - l/)) * R2DQl) * RHPHMZ; 

‘COMMENT---------------------------------; 

HFILD3(/Q/). = HFILD3(/Q/) - DCT7 * ((EFILD2(/Q + l/) * H2(/ + l/) - EFILDZ(/Q - 

li) * H2(/ - l/)) * R2DQl - (EFILDl(/Q + 14/) * Hl(/ + 2/) - EFILDl(/Q - 14j) * 
Hl(/ - 2/)) * R2DQ2) * RHPHM3; 

‘COMMENT---------------------------------; 

EFILDl(/Q/). = EFILDl(/Q/) + DCTS * ((HFILD3(/Q + 141) * H3(/ + 2/) - HFILD3(/Q-1 

4/) * H3(/ - 20) * R2DQ2 - (HFILD2(/Q + 1401) * H2(/ + 3/) - HFILD2(/Q - 140)/ * 
H2(/ - 3/)) * R2DQ3) * RHPHMI: 

‘COMMENT’---------------------------------; 

EFILD2(/Q/). = EFILDZ(/Q/) + DCT8 * ((HFILDl(/Q + 1401) * Hl(/ + 3/) - HFILDl(/Q-14 

O/) * Hl(/ - 31)) * R2DQ3 - (HFILD3(/Q + l/) * H3(/ + l/) - HFILD3(/Q - l/) * 
H3(/ - l/)) * RZDQl) * RHPHMZ; 

‘COMMENT’---------------------------------; 

EFILD3(/Q/). = EFILD3(/Q/) + DCT8 * ((HFILDZ(/Q + l/) * H2(/ + 10 - HFILD2(/Q - 
l/) * H2(/ - l/)) * R2DQl - (HFILDl(/Q + 141) * Hl(/ + 2/) - HFILDl(/Q - 14/) * 

Hl(/ - 2/)) * R2DQ2) * RHPHM3; 

a In this example, PI = 14 and PJ = 10, hence the displacements in the 1, 2, 3 directions are 
(1, -1), (14, -14) and (14 x 10, -14 x lo), respectively. 

in orthogonal curvilinear coordinates using a mesh of size (14 x 10 x 42). The 
source statements were 

for Cl = 1, 2, 3 do 
EQUATE(EFIELD, SUM(EFIELD, MULT(DCT(8), CURL(HFIELD)))); 

for Cl = 1,2,3 do 
EQUATE(HFIELD, DIFF(HFIELD, MULT(DCT(7), CURL(EFIELD)))); 

(30) 
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In this case no symmetry conditions were imposed. DCT7 and DCT8 are time-step 
factors which will usually be the same. 

4. PHYSICAL CONSTANTS AND VARIABLES 

Provision is made for handling nonsubscripted variables which may be constants 
or functions only of the time, and scalar, vector, and tensor functions. A typical 
“declaration” specified by the user is, for example, 

real procedure B; B : = VECTOR(5, 1, ‘B’, 1, 1,O); (31) 

This calls the real procedure VECTOR which in the Algol60 output version reads 

real procedure VECTOR(ORDINAL NUMBER, LENGTH, S, Vl, V2, V3); 
integer ORDINAL NUMBER, LENGTH, VI, V2, V3; string S; 
begin 

VECTOR := if Cl = 1 then Vl else if Cl = 2 then V2 else V3; 
if not PRINT then go to EXIT; 
SIGN IT; TEXT(LENGTH, S); 
COMPONENT; SHIFT; 

EXIT: 

end; (32) 

The parameter ORDINAL NUMBER is not being used here; it controls the actual 
storage region used by B which is important in some Assembler Language versions 
and is retained for consistency. LENGTH gives the length of the identifier string 
‘B’ which will be used in target statements, instructions, and comments, in this 
case 1. The last 3 parameters VI, V2, V3 define whether or not the x, y, z compo- 
nents are identically zero. In this case the user has specified V3 = 0 so that B, is 
taken to be identically zero. Because VECTOR returns the value 0 whenever 
Cl = 3, the z component of the magnetic equation will be suppressed altogether 
(Section 8), and all terms in which B, occurs as a product will be suppressed on the 
right side of any other equation. Otherwise when PRINT = true the procedure 
VECTOR will proceed as follows: 

SIGN IT Examine the value of a global variable SIGN and 
output either a preliminary ‘+‘, ‘-‘, or no sign. 

TEXT(LENGTH, S) Output the string S of length LENGTH, in our 
example ‘B’. 
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COMPONENT 

SHIFT 

Output the current value of the component Cl, e.g., ‘2’. 

Output ‘[’ or ‘(/’ followed by the signed numerical 
value of the current displacement from the local mesh 
origin, and finally a closing bracket, ‘I’ or ‘/)‘. 

Typical output for Algol on the IBM 360 is 

+WQ + 730 (33) 

and similarly for Fortran except for the absence of the slashes. Several other 
versions have been developed; for example,, the displacements can be handled 
symbolically so that the code does not have to be regenerated when the mesh 
size is changed or one might generate ‘BY’ instead of ‘B2’ for clarity. 

The operators RP, RM act on the global variable Cl as determined by algebraic 
and analytic operators such as DOT, CROSS, DIV, CURL and therefore enable 
the correct component label to be calculated. Similarly, vector translation operators 
EP, EM which are called whenever a space derivative occurs are used to calculate 
the position on the lattice relative to the central point Q of the local mesh ‘molecule’. 
In Eq. (33) this appears as a numerical displacement of 73 words within the 
region of core store occupied by the array B2. 

A scalar is handled in a precisely similar way by the real procedure SCALAR 
which requires only a single value 0 or 1 and does not need to call COMPONENT, 
and correspondingly for constants on the one hand, and tensors on the other. 

Adressing of Variables 

We have already mentioned that the generated code can be in any chosen com- 
puter language. Whatever the language, however, we obviously have to be able to 
print some form of address at which the value of a particular variable defined on 
a specific mesh point is stored. The addressing can be completely symbolic, e.g., 
in Algol via an array 

B[CI, Q + DX - DY], (34) 

it can be coded numerically as in KDF9 Usercode 

V34P6M 15 (35) 

(location 34 of variable block 6 modified by register 15), or it can be partly 
numerical and partly symbolic as in IBM 360 assembly code. 

0052(,DISPQ) BY(I,J- 1 ,K) 
(36) 

03 12(PLUSDZ,DISPQ) BZ(I,J,K+ 1)’ 
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Here the displacement in bytes defines both the variable and the position in the 
xy plane relative to the centre of the molecule, DISPQ is a general register which 
contains the current center, while PLUSDZ is a register which shifts one mesh unit 
in the z direction. The comments on the right side give the Fortran notation. A 
fuller example of IBM 360Assembly code produced in this way is shown in Table V. 
Several other choices are possible. In any case the address will depend on the 
variable in question, on the coordinate direction on to which a vector variable is 
being projected, and on the mesh point at which the expression should be evaluated. 
These 3 quantities are defined in all the Symbolic Algol programs [1] by the variable 
name and by the global integer variables Cl and Q. 

Finite-DifSerence Mesh Used for TRINITY 

The mesh is assumed to be Cartesian, of up to 3 dimensions, and equispaced. 
The numbers of mesh points in the x, y, and z directions are denoted by PI, PJ and 
and PK, respectively, so that the total number of mesh points is 

SIZE = PI x PJ x PK. 

This includes six guard planes introduced to enable the same difference expressions 
to be used on the physical boundaries of the volume as inside it. The mesh points 
are counted in the x direction, starting along the intersection of the first y- and 
the first z-plane numbered by integers Z, J, and K. The numerical relation is 

Q = I + (J - 1) x PI + (K - 1) x PI x PJ. (37) 

For output in Algol or Fortran we choose separate arrays for each vector compo- 
nent in which the values are packed with increasing number Q. All the arrays are 
then of the same size equal to PI x PJ x PK and are functions only of one index Q. 

This way of mapping the 3-dimensional mesh onto l-dimensional arrays implies 
that two mesh points which are adjacent in the y direction correspond to array 
elements PI storage locations apart, and that if the points are adjacent in the 
z direction the corresponding elements will be PI x PJ locations apart. The single 
mesh index changes by DELTA = PI x PJ if the shift is in the z direction. It 
is the vector-displacement operators EP and EM that cause, on a single application, 
a shift by one mesh point in the direction determined by the current value of Cl. 
The number of shifts in the x, y, and z directions is denoted in the program by 
the global integers Kl, K2, and K3 from which, knowing PI and PJ, the corre- 
sponding change in Q can be calculated. 

It is sometimes desirable to interleave the variable arrays so that the variable 
values at one mesh point Q are stored sequentially in the memory, e.g., in the order 

RHO, Vl, V2, V3, Bl, B2, B3, TEM (38) 
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TABLE V 

IBM 360 Assembly Code Generated for the 
Second Component of the Magnetic Equation 

The code is efficient, with no extra address-manipulation instructions. Out of the 48 instructions, 
4 are concerned with stack overflow. Note that comments are also generated automatically. 

Operation 
code Location Variable Level 

* 

LE 

LE 

LE 

ME 

LE 

ME 

SER 

LE 

ME 

SER 

LE 

ME 

AER 

ME 

LE 

ME 

STE 

LE 

ME 

SER 

LE 

ME 

SER 

LE 

ME 

AER 

ME 

SER 

0,0308(, DISPQ) 

2, CONSTANT + 008 

4,0296(PLUSDZ, DISPQ) 

4,0312(PLUSDZ, DISPQ) 

6,03C@@‘LUSDZ, DISPQ) 

6,0308(PLUSDZ, DISPQ) 

4,6 

6,0296(MINSDZ, DISPQ) 

6,03 12(MINSDZ, DISPQ) 

496 

6,03OO(MINSDZ, DISPQ) 

6,0308(MINSDZ, DISPQ) 

496 

4, CONSTANT + 016 

6,0324(, DISPQ) 

6,0340(, DISPQ) 

0, STORAGE + 000 

0,032s 

0,0336 (, DISPQ) 

690 
0,0260(, DISPQ) 

0,0276(, DISPQ) 

6 0 

0,0264(, DISPQ) 

0,0272(, DISPQ) 

60 
6, CONSTANT + 016 

4,6 

B2+0+0 

DT 

v2+0+0 

B3+0+0 

v3+0+0 

B2+0+0 

v2+0+0 

B3+0+0 

v3+0+0 

B2+0+0 

RECDS2 

v1+1+0 

B2+1+0 

v2+1+0 

Bl+l+O 

Vl-1+0 

B2-110 

v2-1+0 

Bl-l+O 

RECDS2 

00 001 

01 002 

02 003 

03 004 

03 005 

04 006 

04 007 

03 008 

04 009 

04 010 

03 011 

04 012 

04 013 

03 014 

03 015 

04 016 

04 017 

05 018 

05 019 

05 020 

04 021 

05 022 

05 023 

04 024 

05 025 

05 026 

04 027 

04 028 

03 029 
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TABLE V (continued) 

Operation 
code 

LE 

LE 

AE 

AE 

AE 

AE 

AE 

STE 

LE 

ME 

SER 

MER 

ME 

AER 

LE 

MER 

LE 

AER 

STE 

Location 

6, CONSTANT + 004 

0,0X4(, DISPQ) 

0,0052(, DISPQ) 

0,0308(PLUSDZ, DISPQ) 

0,0308(MINSDZ, DISPQ) 

0,0340(, DISPQ) 

0,0276(, DISPQ) 

2, STORAGE + 004 

2, = E’ + 6.0000’ + 00 

2,0308(, DISPQ) 

032 

690 
6, CONSTANT + 020 

436 

2, STORAGE + 004 

294 

0, STORAGE + 000 

092 

0,0308(, DISPQ) 

Variable Level 

ETA 

B2+0+1 

B2+0-1 

B2+0+0 

B2+0+0 

B2+1+0 

B2-110 

B2+0+0 

REDSSQ 

B2+0+0 

04 030 

05 031 

05 032 

05 033 

05 034 

05 035 

05 036 

06 037 

06 038 

06 039 

05 040 

04 041 

04 042 

03 043 

02 044 

02 045 

01 046 

01 047 

01 048 

followed by the same sequence for the next mesh point (Q + 1) and so on. Adjacent 
values of the same variable are then (say) 32 bytes apart. This enables physical data 
planes to be transferred readily to and from the backing store as a single block, 
and can be done either in Assembler code or, in Fortran, by the use of 
EQUIVALENCE statements. In all cases the SA/II program can readily be adapted 
to calculate the correct word or byte position in the store. 

A similar situation exists when the core store is too small to hold the complete 
set of physical data. The largest size of mesh on which TRINITY has been run 
has 60 x 80 x 48 points and requires two IBM 2301 drums to accommodate the 
7 Mbytes of data. All the calculation then takes place within three sectors of a 
rotating quadruple buffer, the fourth sector being used to transfer data to and from 
the core store in parallel with the calculation. The SHIFT procedure has been 
adapted so that it always refers to the correct areas of buffer storage. 

581/10/3-10 
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5. ORTHOGONAL CURVILINEAR COORDINATES 

Symbolic vector algebra and analysis on a Cartesian lattice in SA/I have been 
described elsewhere [l] and few changes are required for SA/II. It may, however, 
be of interest to demonstrate how the method has been extended to generalized 
orthogonal curvilinear coordinates, with spherical polar coordinates as a special 
case. 

The generalized definitions for divergence and curl can conveniently be written 
as 

div A = & c +, (hi+&Ai), 
z a 

ai a(hi-Ai-) 
cur1 A = c -jq&= 

3(hi+Ai+) 

z &Ii+ aqi- ’ 

where (a,, a,, a3) are unit vectors, h = (h, , h, , h3) are scale factors, and 
+, - denote positive and negative cyclic rotation, respectively. 

These are translated into SA/II as 

real procedure DIV(A); real A; 

DIV := MULT(DOT(DEL(MULT(A, HPHM)), R2DQ), RHlH2H3); (41) 

real procedure CURL(A); real A; 

CURL := MULT(DIFF(RP(MULT(DEL(RP(MULT(A, H))), R2DQ)), 

RM(MULT(DEL(RM(MULT(A, H))), R2DQ))), RHPHM); (42) 

where 

real procedure DEL(X); real X; DEL := DIFF(EP(X), EM(X)); 

This leaves to be defined the real procedures 

(43) 

H -+ (h, , h, , h3) (vector function) 

RHl H2H3 --f l/(h,h,h,) (scalar function) 

RHPHM + l/(h+h-) (vector function) 

R2DQ + l/(2 * DQ) (vector). (44) 

The mnemonic ‘R’ means reciprocal and signifies that division is avoided in the 
interests of efficiency, and for similar reasons h,h,h, and hfh- are defined separately 
instead of being constructed from h. 

When using the leapfrog scheme [l] we find it useful to store the scale factors 
and quantities that are constructed from them on a subsidiary mesh centered on 
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the point Q, which may either contain 7 points if only one displacement &Aqi 
occurs at a time (Fig. 4) or 27 if they occur together. Then, for example, RHPHM 
becomes a real procedure which generates the code 

RHPHMl [I], RHPHM%[I], RHPHM3[1] (45) 

with I in the range (-3,3) as in Table IV. 
The generated target module is therefore still independent of the coordinate 

system although it does depend on the symmetry. To run the target program we 
must reload the variables on the subsidiary mesh whenever they alter. 
In spherical polars the scale factors are 

h,= 1, ho = r, h, = r sin 8, (46) 

FIG. 4. Subsidiary mesh used to store the scale factors. 

so that we can minimize the amount of recalculation by assigning the variables 
in order of q1 = q.-+ q2 = 8, q3 = r with the innermost scan over q1 , although 
this is not necessarily the best choice on other grounds. 

Some further improvements can be made if the coordinate system is specified 
at generation time; for example h, might be automatically suppressed since it is 
known to be unity. 

6. THE PROBLEM PROGRAM AND THE GENERATOR PROGRAM 

The problem program may be in any desired combination of languages, and by 
no means all of it need be constructed automatically. One convenient approach 
is to use Fortran for the more straightforward control sections of the program, 
and for setting up core storage, and to use automatically generated assembly-code 
modules to handle the solution of the partial-differential equations themselves as 
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well as any complexities due to boundary conditions. Changes to the physics can 
then be made reliably and quickly, simply by generating a new module and linking 
it to the remainder of the program. The automatically generated modules operate 
on variables in the COMMON storage area, and communicate with the rest of the 
program either via COMMON or through argument lists. To switch to a new type 
of computer system, it is only necessary to alter the generator program so that it 
outputs the appropriate assembly code. 

An alternative approach is to use a combination of Algol 60 control program 
and assembly-code modules. This approach has advantages if the local Algol 
system is sufficiently powerful, but in most cases Fortran is at present to be 
preferred. 

One therefore starts by developing a strategy for the problem which takes into 
account its modular structure, the layout of core and backing storage, the com- 
munication between program modules, the choice of language and programming 
style for each module, and so on. Those parts of the program whose execution count 
is low should be optimized 
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ii. Language. 

iii. System facilities. 

c. Number of dimensions and coordinate system. 

d. Mesh and storage layout 

e. Symbols used for variables and constants. 

f. Numerical methods and difference schemes. 

PHYSICAL xx PROBLEM 

/ I Express algerithm symboblly 
- Plan progmm structure 

Work out storage 

525 

FIG. 5. Programming strategy. The method of solution is first tried out by writing a prototype 
program which is used to produce sets of test results. Modules of the prototype are next re- 
constructed either by hand or with the SA/II generator program to make them more efficient. 
Test results from the production program are then compared with those from the original tests 
to make sure that the updating has been carried out correctly. 
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g. Physical equations. 
h. Boundary conditions. 
i. Physical coefficients (e.g., thermal conductivity). 

Figure 6 shows the relation between the modules which have been developed so 
far while Table V provides a list. In Section 7 we shall go through this list briefly, 
indicating what the various modules do. A detailed description together with a 
program listing and test runs will be published elsewhere [6]. 

Relation to Compilers and Macro-Generators 

In mathematics or theoretical physics it is always possible for an author to devise 
a new notation or extension to the accepted “language” and having defined it for the 
reader, to use it throughout a paper or a course of research. This flexibility has been 
largely unavailable in computing science, where it has been customary to use rather 
standardized and limited languages such as Fortran, Algol or PL/I which are 
constructed either by manufacturers or by international committees, and translated 
by compilers which are expensive and time-consuming to write and to maintain. 
The only degree of freedom left to the individual has been the ability to define 
sets of library subroutines or procedures which in effect become additions to the 
standard notation. There is no limit on the extensions which can be achieved 
in this way but programs tend to run slowly if they make considerable use of 
procedure calls, as in SA/I. 

Macro-processors such as STAGE2 [4] enable any string of symbols to be given 
a meaning. The user is free to define sets of macros which convert any string 
into any other string and eventually, into the code of some high- or low-level 
language whose efficiency depends solely on his own ingenuity. Thus the full 
flexibility of mathematics is achieved provided that the character set is wide enough. 

SA/II appears to lie somewhere in between. The formal structure of the input 
string is constrained by the syntax of Algol so that there is usually an excessive 
number of brackets as in Table III, but the manipulations that can be carried out 
are quite general and it is remarkably easy for the individual user to make 
alterations or additions to the “language” by changing the basic procedures of the 
generator program. An SAjII generator program is also quite short; usually only 
a few hundred Algol statements. Thus we have effectively at our disposal an ultra 
high-level “language” compiler which is difference-scheme and problem dependent, 
but is also easily changed by any user. 

7. STRUCTURE OF THE GENERATOR PROGRAM 

The current version divides logically into 6 main modules and 15 submodules 
as shown in Table VI. 
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VI.2 
CONTROL 

STATEMENTS 

)a V6 

INITlALl2AlUl 

FIG. 6. Relation between the modules of the generator program. An arrow indicates that one 
module makes use of procedures belonging to the other. Note that all output is channelled 
through a single short module BASIC OUTPUT so that only this module has to be changed to 
runlthe program on another computer. 

I. BASIC OUTPUT 

In transferring the generator program to a new computer system the iirst task is 
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TABLE VI 

List of Generator Program Modules and Submodules 

I. BASIC OUTPUT 

II. CHARACTERS 

III. MATHEMATICS A 

III. 1. ARITHMETIC 

111.2. ALGEBRA 

IV, MATHEMATICS B 

IV.1. VECTOR ANALYSIS 

IV.2. SPACE AND TIME SCALES 

V. OUTPUT ORGANIZATION 

V. 1. TRANSLATION LOGIC 

V.2. SIGNS, SPACES, NUMBERS AND FUNCTIONS 

V.3. VARIABLE CLASSES 

V.4. COMPONENTS AND DERIVATIVES 

VS. COMMANDS AND REGISTER CHECKS 

V.6. INITIALIZATION 

VI. PROBLEM DEFINITION 

VI.1. PHYSICAL CONSTANTS AND VARIABLES 

VI.2. CONTROL STATEMENTS 

VI.3. SOURCE STATEMENTS 

to rewrite this module, which forms a link to the standard Algol output procedures 
of the computer on which the generator is being run. (This need not of course be 
the same as the computer for which the optimized code is being produced.) The 
ICL KDF9 version occupies about 25 cards and it can usually be i-written for 
another system in a few hours. The module defines the output channel and sets 
up standard formats, and contains procedures which enable the output to be 
manipulated in a straightforward system-independent way; e.g., 

BLANKS(N) Output N blank spaces 

LINE Start a new line 

OUTNUM(L, F, X) Output the value of an arithmetic expression X in 
format F, length L 

TEXT(L, S) Output a string S of length L? 

The complete set is enough to generate code and comments in any language. 

e The simpler procedure PRINT discussed in Section 2 did not contain the parameter L, which 
helps the output procedures to organize the layout of the line. 
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II. CHARACTERS 

This also contains no submodules. It is made up of a dozen or so simple statement 
procedures which enable one to refer to symbols like (, + ; = etc., by symbolic 
names: OPENB, COMMA, PLUS, SEMICOLON, EQUALS. Although this 
somewhat slows down code generation it makes the program much easier to read 
and quicker to write, particularly in view of the awkward way in which string quotes 
are often represented in Algol. Examples are 

procedure EQUALS; TEXT( 1, ‘=‘); 

procedure CLOSEB ; TEXT( 1, ‘)‘); 

procedure OPENSB; TEXT(1, ‘[‘) 

procedure MINUS; TEXT(1, ‘-‘); (47) 

The first argument gives the lenth of the string, in this case 1. 

III. MATHEMATICS A 

The tist mathematics module comprises the submodules 

ARITHMETIC 

ALGEBRA. 

The former of these contains a set of procedures 

SUM(X, Y) MULT21(X, Y) 

DIFF(X, Y) QUO’WL Y) 
MULT(X, Y) SUM3(X, Y, Z) 

which are all dealt with by a single fairly complex procedure TRIPOP (triple 
operator) to be explained elsewhere [5], e.g., 

real procedure SUM3(X, Y, Z); real X, Y, Z; SUM3 := TRIPOP(5, X, Y, Z, 1); 

(48) 
The first argument of TRIPOP is an operation code, the second to fourth are the 
operands, and the last two specify the first or second indexes (in the case of a second- 
rank tensor). Procedure SUM3 is convenient when handling 3D scalar products and 
divergences while MULT21 is used for handling tensor contractions. The others 
deal with the arithmetic operations +, -, x , /. 

The ALGEBRA submodule contains the rotation operators RI? and RM and 
the vector-algebraic operators DOT and CROSS. 
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IV. MATHEMATICS B 

In the simplest version the second mathematics module contains the two sub- 
modules 

1. CARTESIAN ANALYSIS LEAPFROG 

2. SPACE AND TIME SCALES. 

As its name implies, the first of these submodules depends on the mesh geometry 
and on the difference schemes used (although not on the physical problem or on 
the computer system). The procedures EP, EM, DEL, GRAD, DIV, CURL, 
SAV, DELSQ are fairly direct translations of the SA/l versions already 
published [I]. The other submodule deals with the constants dt, 2dS and (&)z 
and can be also readily extended. 

V. OUTPUT ORGANIZATION 

This module depends on the output language. It may contain up to 6 submodules 
of which number 5 is omitted in the Algol target version: 

V.l. TRANSLATION LOGIC. Contains most of the logic needed to generate 
the output code and to eliminate expressions which are identically zero, as well as 
unnecessary brackets. It therefore deserves a more detailed description which is 
given in Ref. [6]. 

V.2. SIGNS, SPACES NUMBERS AND FUNCTIONS. A number of standard 
utilities are provided here, some of which depend on the output language or 
format. For example a line overflow in Fortran requires that a continuation symbol 
should be punched in column 6; overflow in assembly language is handled in a 
different way while at the end of an Algol statement a semicolon is required. Signs, 
integer and real numbers and elementary mathematical functions are also provided 
for. The most important procedure is EQUATE which has been discussed in 
Section 3. 

V.3. VARIABLE CLASSES. Contains procedures which deal with constants, 
scalars, vectors and tensors of which (32) is an example. 

V.4. COMPONENTS AND DERIVATIVES. Contains the procedures COM- 
PONENT and SHIFT which generate the code for referencing storage locations, 
including any subsidiary calculations that are needed. 

V.5. COMMANDS AND REGISTER CHECKS (IBM 360 Assembler code 
only). Contains procedures REGISTER REGISTER, REGISTER STORAGE 
which issue IBM 360 instruction mnemonics, and STORE IF OVERFLOW 



OPTIMIZATION OF SYMBOLIC ALGOL 531 

which determines whether or not the required register is already in use, if so 
copying it into a reserved location in core store. 

V.6. INITIALIZATION. Contains a procedure START which initializes 
the variables of the generator program. 

VI. PROBLEM DEFINITION 

This module is provided by the user and consists of three submodules which 
have been kept as simple and as close to the physics as possible: 

1. PHYSICAL CONSTANTS AND VARIABLES 

2. CONTROL STATEMENTS 

3. SOURCE STATEMENTS. 

Table III gives the source statements for TRINITY while (31) is an example of a 
variable declaration. Typical initialization statements are 

NDIM := 3; PI := PJ := PK := 8; (49) 

(use an 8 x 8 x 8 mesh in 3 dimensions). 

8. CONCLUDING REMARKS 

A satisfactory solution to the slowness of programs written in Symbolic Algol I 
has been found. Using a style known as Symbolic Algol II it has been possible to 
translate finite-difference equations automatically into fully explicit codes in a 
number of target languages. The best of these codes are fully competitive in speed 
with hand-optimized Fortran and are fast enough to make the solution of time- 
dependent magnetohydrodynamic equations in three space dimensions a feasible 
proposition. In a recent exercise, a 3D plasma code in rotating spherical coordinates 
was designed and written in about four days using the SA/II method. The same 
translator program can be used for other systems of fluid equations and also for 
problems in two dimensions. Although the advantages of the method are smaller 
when applied to simpler problems, repetition of effort can still be avoided. More 
importantly, the use of well-tested procedures reduces programming errors, in 
particular those of a numerical nature which are often impossible to detect except 
experimentally through a comparison with another calculation. Though at first 
sight trivial this may prove to be one of the important attractions of the method. 

The underlying principle is that instead of writing a problem program by hand, 
one constructs a generator problem which writes it automatically. Because this 
generator program is built up from prefabricated modules and is also highly 
symbolic it can be developed and altered very quickly. 
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In essence we are using Algol as a powerful macro-generator which is capable 
of substituting one expression into another as well as performing many subsidiary 
calculations. Because a value is associated with each substitution, extra information 
can be carried along which allows some optimization to be done. A further 
extension might be to relate this value to a generalized variable type (e.g., logical, 
integer, real, complex, quaternion, matrix or whatever), so that any necessary 
conversions can be carried out and the basic operators SUM, DIFF, MULT, etc., 
can be interpreted in the appropriate way in each case. This is close to the procedure 
which is followed in mathematics which allows operators such as +, -, x to 
be freely generalized to new classes of object. Other interesting possibilities are to 
apply the SA/II technique to other kinds of program such as operating systems 
and compilers, and to other types of computer such as the CDC STAR. 

The features of Algol 60 that appear to be necessary or useful for this kind of 
work are [8,9] 

(a) Call by name. Needed for the symbolic substitution of one expression 
into another. 

(b) Parameterless typedprocedures. Just as in mathematics, a function need 
have no explicitly indicated arguments. (Fortran does not allow this.) 

(c) English-language ident$ers of any length, with blanks ignored. Can be 
used to make programs more intelligible and to avoid bulky comments. 

(d) Elimination of the unnecessary word ‘CALL’. 

(e) Ability to have several statements on one line. Both (d) and (e) make 
programs more concise and attractive. 

(f) No overhead on procedure declarations. Often these declarations are 
only one card long, and one line in the compiler listing, instead of several pages 
as in Fortran. 

(g) Block structure for variable scopes. Global variables can be passed into 
a procedure implicitly without the need for a bulky COMMON deck or argument 
lists. 

(h) Recursion. Typed procedures can be substituted into one another 
without restriction as required by the mathematical physics. 

(i) Side efsects. Available also in other languages, but mentioned here as 
being crucial to the whole method. 
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